10 современных серийных автомобилей с лучшей обтекаемостью

ТОП-10 лучших автомобилей по аэродинамике

Статья про лучшие автомобили по аэродинамическим показателям: топ-10 моделей, их некоторые технические особенности. В конце статьи — видео про худшие машины по аэродинамике. Статья про лучшие автомобили по аэродинамическим показателям: топ-10 моделей, их некоторые технические особенности. В конце статьи — видео про худшие машины по аэродинамике.

Из года в год автопроизводители всего мира пытаются сделать свои автомобили ещё более быстрыми, более устойчивыми и экономичными. Поэтому инженеры и конструкторы, занимающиеся проектированием и сборкой машин, так много времени уделяют аэродинамическим показателям своих творений.

Чем меньше уровень аэродинамического сопротивления автомобиля, чем выше его предельная скорость, меньше расход топлива и стабильнее поведение на дороге. В сегодняшней подборке — автомобили, обладающие наилучшими аэродинамическими характеристиками.

Машины с лучшими аэродинамическими характеристиками

Mercedes-Benz CLA BlueEFFICIENCY

В 2013-м компания Mercedes представила специальную версию седана CLA BlueEFFICIENCY, при разработке которой огромное внимание было уделено аэродинамике.

Так, автомобиль получил специальные аэродинамические выштамповки, особый дизайн передних стоек и внешних зеркал, а также особый дизайн легкосплавных дисков. В результате величина сопротивления встречным потокам воздуха составила всего 0,22 Сх.

Tesla Model 3

Коэффициент Сх для электрокаров – один из наиболее значимых показателей, ведь чем он ниже, тем меньше автомобиль расходует электроэнергии и тем большее расстояние способен проехать.

В стандартном исполнении электрокар способен преодолеть 215 миль (346 км), при этом с нуля до сотни машина разгоняется за каких-то 6 сек.

Volkswagen XL1

В 2013 году Volkswagen показал модель XL1, которая, несмотря на свою футуристическую и, откровенно говоря, спорную внешность все же была запущена в серийное производство.

Всего было выпущено 250 экземпляров модели. Оправданием столь необычного дизайна стал низкий коэффициент аэродинамического сопротивления равный 0,19 Сх, что является самым лучшим результатом среди серийных автомобилей.

Daihatsu UFE-III Concept

В 2005 году руководство компании Daihatsu в рамках Токийской автовыставки продемонстрировало концептуальный автомобиль компакт-класса, получивший название UFE-III.

Под капотом авто располагался экономичный гибридный силовой агрегат, представленный 0,66-литровым бензиновиком и небольшим электродвигателем.

Модель могла похвастаться небольшим расходом топлива, не превышающим 1,6 л/100 км, а также отменной аэродинамикой – коэффициент лобового сопротивления равнялся всего 0,168 Сх.

General Motors Precept Concept

Precept Concept был представлен в 2002 году. Машина обладала необычной внешностью, выполненной в стилистике культового Citroen DS, а также скоромным аппетитом, не превышающим 3л/100 км.

При этом Precept мог похвастаться наличием 5-местного салона, а также коэффициентом аэродинамического сопротивления в 0,163 Сх.

К сожалению, производитель посчитал машину чрезмерно дорогой и сложной в конструировании, из-за чего было принято решение не пускать её в серийное производство.

Volkswagen 1 Liter Car Соncept

В 2002 году немецкий автоконцерн VW представил свою новую разработку – концептуальную модель 1 Liter Car Concept.

При создании авто перед производителями стояла задача создания максимально экономичного авто, и им это удалось. Средний расход топлива авто составил всего 0,99 л/100 км. Добиться такого показателя получилось за счёт небольшой массы (290 кг) и минимального аэродинамического сопротивления, составляющего всего 0,159 Сх.

JCB Dieselmax

В 2006 году дизельный JCB Dieselmax установил рекорд скорости, разогнавшись сначала до впечатляющих 529 км/ч, а потом до 563,42 км/час. Таким образом, машина смогла побить предыдущий рекорд в 380 км/ч, который был установлен в далёком 1973 году.

Заезды проводились на соляном озере Бонневиль, расположенном на территории штата Юта (США).

Автомобиль мог похвастать обтекаемым кузовом, имеющим коэффициент аэродинамического сопротивления в 0,147 Сх, а также парой дизельных двигателей, устанавливаемых на экскаваторах.

В настоящее время автомобиль хранится в музее компании JCB.

Fiat Turbina

В 1954 году итальянский автопроизводитель Fiat представил модель Turbina, ставшей первым европейским авто с газотурбинным двигателем.

Максимальная отдача силовой установки достигала 300 л. с., а максимальная скорость достигала отметки в 250 км/ч. Однако самой главной особенностью модели был её аэродинамически высокоэффективный кузов, величина аэродинамического сопротивления которого составляла всего 0,14 Сх.

Несмотря на наличие первоклассной аэродинамики, машина была признана бесперспективной и отправлена на хранение в Туринский автомузей, где она находится по сегодняшний день.

Ford Probe V Concept

В 1983 году компания Ford начала разработку концепт-кара Probe V Concept, официальный дебют которого состоялся в 1985 году.

Машина обладала футуристической внешностью со сдвижными боковыми дверьми. Кроме того инженеры закрыли колеса специальными щитками, а стекла вклеили в оконные проёмы заподлицо с поверхностью кузова.

Но несмотря на все усилия разработчика, автомобиль так и не пошёл в серийное производство, оставшись необычным и стильным концептом.

Goldenrod Land Speed Race Car

Goldenrod Land Speed Race Car был сконструирован братьями Саммерсами в далёком 1965 году, при этом автомобиль по сегодняшний день носит звание самого аэродинамичного в мире.

Так, показатель лобового сопротивления «автомобильной торпеды» составляет всего 0,117 Сх. В движение машина приводилась посредством 4-х семилитровых 8-цилиндровых бензиновых моторов, расположенных продольно друг за другом и суммарно генерирующих мощность 2400 л. с.

Заключение

Борьба за лучшую аэродинамику продолжается, а значит, уже совсем скоро мы можем увидеть концепт или серийную версию авто, аэродинамические показатели которого смогут превзойти показатели Goldenrod Land Speed Race Car.

Видео про худшие машины по аэродинамике:

ТОП-10 лучших автомобилей по аэродинамике


Содержание статьи:

  • Машины с лучшими аэродинамическими характеристиками
  • Видео про худшие машины по аэродинамике

Из года в год автопроизводители всего мира пытаются сделать свои автомобили ещё более быстрыми, более устойчивыми и экономичными. Поэтому инженеры и конструкторы, занимающиеся проектированием и сборкой машин, так много времени уделяют аэродинамическим показателям своих творений.

Чем меньше уровень аэродинамического сопротивления автомобиля, чем выше его предельная скорость, меньше расход топлива и стабильнее поведение на дороге. В сегодняшней подборке — автомобили, обладающие наилучшими аэродинамическими характеристиками.

Машины с лучшими аэродинамическими характеристиками

Mercedes-Benz CLA BlueEFFICIENCY


В 2013-м компания Mercedes представила специальную версию седана CLA BlueEFFICIENCY, при разработке которой огромное внимание было уделено аэродинамике.

Так, автомобиль получил специальные аэродинамические выштамповки, особый дизайн передних стоек и внешних зеркал, а также особый дизайн легкосплавных дисков. В результате величина сопротивления встречным потокам воздуха составила всего 0,22 Сх.

Читайте также:
Какие категории водительских прав были открыты у Леонида Брежнева, и почему его удостоверение можно купить за 1,5 миллиона рублей

Tesla Model 3


Коэффициент Сх для электрокаров – один из наиболее значимых показателей, ведь чем он ниже, тем меньше автомобиль расходует электроэнергии и тем большее расстояние способен проехать.

Именно поэтому при создании Tesla Model 3 производитель особое внимание уделил её аэродинамике. В итоге машина получила стильный обтекаемый кузов, а коэффициент сопротивления составил всего 0,21Сх.

В стандартном исполнении электрокар способен преодолеть 215 миль (346 км), при этом с нуля до сотни машина разгоняется за каких-то 6 сек.

Volkswagen XL1


В 2013 году Volkswagen показал модель XL1, которая, несмотря на свою футуристическую и, откровенно говоря, спорную внешность все же была запущена в серийное производство.

Всего было выпущено 250 экземпляров модели. Оправданием столь необычного дизайна стал низкий коэффициент аэродинамического сопротивления равный 0,19 Сх, что является самым лучшим результатом среди серийных автомобилей.

Daihatsu UFE-III Concept


В 2005 году руководство компании Daihatsu в рамках Токийской автовыставки продемонстрировало концептуальный автомобиль компакт-класса, получивший название UFE-III.

Под капотом авто располагался экономичный гибридный силовой агрегат, представленный 0,66-литровым бензиновиком и небольшим электродвигателем.

Модель могла похвастаться небольшим расходом топлива, не превышающим 1,6 л/100 км, а также отменной аэродинамикой – коэффициент лобового сопротивления равнялся всего 0,168 Сх.

General Motors Precept Concept


Precept Concept был представлен в 2002 году. Машина обладала необычной внешностью, выполненной в стилистике культового Citroen DS, а также скоромным аппетитом, не превышающим 3л/100 км.

При этом Precept мог похвастаться наличием 5-местного салона, а также коэффициентом аэродинамического сопротивления в 0,163 Сх.

К сожалению, производитель посчитал машину чрезмерно дорогой и сложной в конструировании, из-за чего было принято решение не пускать её в серийное производство.

Volkswagen 1 Liter Car Соncept


В 2002 году немецкий автоконцерн VW представил свою новую разработку – концептуальную модель 1 Liter Car Concept.

Автомобиль мог похвастаться наличием каркаса из магниевого сплава, композитными панелями кузова, а также одноцилиндровым дизельным моторчиком объёмом 0,3-литра и отдачей в 8,5 «лошадок».

Когда Вам случается принимать пищу в машине, то есть способ, чтобы обед или ужин не остывал. Включите подогрев сиденья, поставьте на него еду в контейнере, и она будет теплой.

При создании авто перед производителями стояла задача создания максимально экономичного авто, и им это удалось. Средний расход топлива авто составил всего 0,99 л/100 км. Добиться такого показателя получилось за счёт небольшой массы (290 кг) и минимального аэродинамического сопротивления, составляющего всего 0,159 Сх.

JCB Dieselmax


В 2006 году дизельный JCB Dieselmax установил рекорд скорости, разогнавшись сначала до впечатляющих 529 км/ч, а потом до 563,42 км/час. Таким образом, машина смогла побить предыдущий рекорд в 380 км/ч, который был установлен в далёком 1973 году.

Заезды проводились на соляном озере Бонневиль, расположенном на территории штата Юта (США).

Автомобиль мог похвастать обтекаемым кузовом, имеющим коэффициент аэродинамического сопротивления в 0,147 Сх, а также парой дизельных двигателей, устанавливаемых на экскаваторах.

В настоящее время автомобиль хранится в музее компании JCB.

Fiat Turbina


В 1954 году итальянский автопроизводитель Fiat представил модель Turbina, ставшей первым европейским авто с газотурбинным двигателем.

Максимальная отдача силовой установки достигала 300 л. с., а максимальная скорость достигала отметки в 250 км/ч. Однако самой главной особенностью модели был её аэродинамически высокоэффективный кузов, величина аэродинамического сопротивления которого составляла всего 0,14 Сх.

Несмотря на наличие первоклассной аэродинамики, машина была признана бесперспективной и отправлена на хранение в Туринский автомузей, где она находится по сегодняшний день.

Ford Probe V Concept


В 1983 году компания Ford начала разработку концепт-кара Probe V Concept, официальный дебют которого состоялся в 1985 году.

Машина обладала футуристической внешностью со сдвижными боковыми дверьми. Кроме того инженеры закрыли колеса специальными щитками, а стекла вклеили в оконные проёмы заподлицо с поверхностью кузова.

Разработкой дизайна авто занималось известное итальянское ателье Ghia, сотрудникам которой вместе с инженерами и конструкторами Ford удалось добиться впечатляющей аэродинамики – 0,137 Сх.

Но несмотря на все усилия разработчика, автомобиль так и не пошёл в серийное производство, оставшись необычным и стильным концептом.

Самые аэродинамичные автомобили

Короли аэродинамики в автомире.

Аэродинамика – это загадка мироздания, которую, конечно, уже давно разгадали ученые, конструкторы и инженеры автопромышленности. С самого начала появления автомобилей в нашем мире аэродинамика идет с ними бок о бок. Да, было время, когда автопроизводители забыли про важность аэродинамики. Особенно когда топливо стоило дешевле, чем алкоголь. Но сегодня, когда бензин и дизельное топливо не радуют своими ценниками на АЗС многих стран, физика твердого тела, движущегося в воздухе, имеет фундаментальное значение для ускорения и повышения эффективности автомобилей.

Напомним, что коэффициент аэродинамического сопротивления воздуха влияет на то, как автомобиль потребляет топливо на скорости. Это же касается и электрических автомобилей, для которых аэродинамика играет первостепенную роль, поскольку чем меньше сопротивление воздуха, тем меньше расходуется электричество для питания электромотора.

Благодаря развитию аэродинамики в автопромышленности многие автомобили стали обтекаемы по сравнению со своими предшественниками. Но в истории автомира было немало примеров, когда автомобильные компании пытались экспериментировать с необычными аэродинамическими формами. К сожалению, в большинстве случаев потребители не оценили то, что получалось, по причине того, что форма не соответствовала духу времени.

Мы собрали для вас самые интересные и необычные автомобили, имеющие странные аэродинамические кузова. Некоторые проекты неудачны, некоторые вполне удивляют даже сегодня.

ALFA 40-60 HP Aerodinamica Castagna

Первым в истории шоу-каром и первой попыткой применить принципы аэродинамики к автомобилям был аэродинамический автомобиль ALFA, выпущенный в 1914 году (в те годы марка еще не называлась Alfa Romeo).

Автомобиль был создан итальянской компанией Carrozzeria Castagna для графа Марио Рикотти. Кузов машины был выполнен в виде капли и опирался на классическую раму.

Благодаря алюминиевому кузову и отсутствию капота максимальная скорость этого концепта составляла 120 км/ч. Когда машина пошла в серийный выпуск, скорость уже составляла 139 км/ч. К сожалению, точное значение аэродинамического сопротивления воздуха этого автомобиля неизвестно.

Rumpler Drop Car

На немецком автосалоне 1921 года в Берлине австрийский дизайнер Эдмунд Румплер представил свой необычный автомобиль, получивший имя «Drop Car». Коэффициент лобового сопротивления этого автомобиля составлял 0.28 cd. Для того времени это не просто сенсация. Вы не поверите, но всего несколько лет назад у многих современных автомобилей этот коэффициент был хуже!

Читайте также:
7 самых редких автомобилей стоимостью более $3 млн

К сожалению, значение аэродинамического сопротивления воздуха не гарантировало успех автомобиля. Спрос на машину был маленьким. Всего было произведено сто автомобилей. По всей видимости, людей напугала футуристическая внешность автомобиля.

Сегодня в мире сохранилось всего два таких автомобиля, один из которых находится в немецком музее в Мюнхене.

Tatra 87

Представленная в 1936 году, Tatra 87 сегодня является иконой дизайна. Благодаря хорошо спроектированной задней части машины значение аэродинамического сопротивления составляет 0,36. По традиции тех лет чешский автопроизводитель установил двигатель в заднюю часть машины.

Высокая скорость и низкое потребление топлива были сильной стороной Татры. Для того времени это был идеальный автомобиль для шоссе. К 1950 году было произведено 3000 автомобилей.

Saab 92

Когда Saab проектировал первый автомобиль, им пригодился опыт авиастроения, где аэродинамика с самого начала играет важную роль. В 1949 году компания выпустила модель Saab 92, с превосходным коэффициентом аэродинамического сопротивления воздуха, составляющим 0,30.

Этот автомобиль легко преодолевал скорость в 100 км/ч, несмотря на небольшую мощность двухтактного 25-сильного двигателя.

Citroën DS

Впервые представленный на Парижском автосалоне в 1955 году, Citroën DS выглядел для многих посетителей как космический корабль пришельцев, приземлившийся на Землю.

Чтобы подтвердить уникальность автомобиля, в дополнение к инновационной технологии (машина имела гидропневматическую подвеску!) дизайнеры создали модели футуристический аэродинамический дизайн, коэффициент сопротивления воздуха которого составлял 0,37. Это выдающийся результат по сравнению с конкурентами того времени.

Alfa Romeo Giulia

Кто-то может не поверить, что этот автомобиль имеет отличные аэродинамические характеристики, так как внешность классической Alfa Romeo Giulia представлена в виде квадрата. Но легендарная Alfa Romeo Giulia 1962 года показала в аэродинамической трубе уникальные результаты. Коэффициент сопротивления составлял всего 0,34, что ниже даже у более бегло выглядящего NSU Ro 80 (0,355), который вышел на рынок только пять лет спустя.

Citroën GS

Вот еще один автомобиль, который при первом взгляде также не внушает доверия в аэродинамическое чудо, – это Citroën GS. На его премьере в 1970 году производитель объявил, что машина имеет коэффициент сопротивления воздуха всего 0,31 cd.

Семейный седан имел много места в комфортном салоне и оснащался гидропневматической подвеской. Было выпущено более 2,5 миллиона автомобилей. Выпуск продолжался до 1986 года.

Audi 80

Компания Audi, начиная с 1980-х, начала устанавливать свои высокие стандарты аэродинамических характеристик, навязав другим автопроизводителям новую планку. Так, сначала была представлена Audi 100 C3, которая в аэродинамической трубе показала коэффициент сопротивления воздуха 0,30 cd, а затем в 1986 году была представлена Audi 80 B3 («бочка»), показавшая коэффициент сопротивления 0,29. Для справки: уже в 1987 году новая модель Opel Omega A имела коэффициент аэродинамического сопротивления воздуха 0,28. 1980-е годы можно смело назвать десятилетием аэродинамики в автопромышленности.

EV1 General Motors

Хотя компания General Motors официально и не продавала свою модель EV1, а только сдавала в аренду, этот автомобиль написал в автопромышленности свою историю. Этот автомобиль вместил в себя как и разочарования (проект был сырой, и машина была ненадежна), так и позитив. Этот автомобиль, начиная с 1996 года, стал первым электромобилем в автопромышленности. Всего было произведено 1000 автомобилей.

Машина оснащалась простыми свинцовыми или никель-металлогидридными батареями. Но, несмотря на это, запас хода у электрического транспортного средства был потрясающим – 230 км. И все это благодаря конструкции кузова, который имел невероятный коэффициент сопротивления воздуха, составляющий всего 0,19 cd.

Tesla Model S

Tesla Model S представляет собой электрический автомобиль, который изменил историю автопромышленности, направив весь автомир развиваться по новому пути. И все это благодаря дальновидности главы компании Илона Маска и дизайнера Франца фон Хольцхаузена, который разработал пятиместный седан с коэффициентом аэродинамического сопротивления воздуха 0,24.

Для сравнения: в 2012 году это значение представляло собой общий мировой рекорд для массовых серийных автомобилей. Такой коэффициент имели автомобили Mercedes S-класса. Благодаря потрясающей форме кузова автомобили Тесла в идеальных условиях могут проехать 400-500 километров.

Mercedes-Benz А-Класс седан

К концу нынешнего десятилетия (на данный момент) самым аэродинамическим автомобилем на рынке является седан Mercedes A-класса (модельный ряд 2018 года) с исключительной аэродинамикой (коэффициент 0,22 cd).

Это стало возможным благодаря комплексной герметизации кузова автомобиля (включая герметизацию фар), включая полную герметизацию днища автомобиля. В том числе полностью изолирован моторный отсек, детали задней подвески и многое другое. Спойлеры колес сзади и спереди были специально оптимизированы, чтобы колеса могли вращаться с минимальными потерями.

Стримлайнеры или история аэродинамики автомобиля. Начало

Доброго дня!
Ещё до рассвета автомобиля было теоретически известно, что наибольшее препятствие для достижения высокой скорости и топливной экономичности всегда представлял воздух, а точнее его сопротивление. Разрешение таких проблем на практике — длинная и захватывающая история. Мечтатели, инженеры, гонщики и предприниматели — все соблазнялись потенциальными преимуществами аэродинамики. Усилия, предпринятые для понимания и развития этих вопросов, позволили построить одни из самых замечательных автомобилей, когда-либо созданых, даже если они бросали вызов эстетическим предпочтениям своего времени. Сейчас мы живём во времени высокоаэродинамических машин, но проходя этот путь с появления автомобиля, человек встречал большое «воздушное сопротивление».

Истоки аэродинамики уходят во времени, как минимум, на двести лет назад. Идеальная обтекаемая форма была описана в 1804 году сэром Джорджем Кейли (George Cayley) как «очень продолговатый сфероид». И уже в 1865 году Самуал Калторп (Samual Calthorpe) запатентовал так называемый «воздухорассекающий поезд», который выглядел удивительно продвинуто с учетом того времени.

Гонщики, особенно те, которые гонятся за желанным рекордом наземной скорости (РНС), как правило, были первыми, кто начал на практике использовать аэродинамические средства. La Jamais Contente (Всегда недовольный — рус.) — это первый автомобиль, разогнавшийся свыше 100 км/ч, который побил рекорд наземной скорости в 1899 году. Самое занимательное, что это был электромобиль!

Читайте также:
Где-то мы такое уже видели: 5 современных авто, которые уличили в плагиате

Эволюция аэродинамики автомобилей, установивших рекорды наземной скорости проходила достаточно быстро, как это видно на примере Stanley Steamer Rocket 1906 года. Здесь хотелось бы остановиться подробнее. Компания Stanley Motor Carriage была американским производителем паровых автомобилей. Компания основана в 1898 году и зарегистрирована в 1901 году. Автомобили, производимые компанией, назывались Stanley Steamers (Паровики Стэнли). Они производились с 1896 по 1924 год. В начале 1900-х годов пар использовался для привода локомотивов, пароходов и даже швейных машин. А вышеназванный Stanley Steamer Rocket преодолела 200-километровый барьер скорости и развил 205,44 км/ч! Этот рекорд держался до 1924 года, и до 2009 года для транспортных средств с паровым двигателем.

Первая задокументированная попытка создать аэродинамический, обтекаемый пассажирский автомобиль датируется 1914 годом. Этот автомобиль построен компанией ALFA (впоследствии Alfa Romeo) совместно с кузовным ателье Кастанья (Carrozzeria Castagna) для итальянского графа Рикотти (Ricotti), и получил название ALFA 40/60 HP Aerodinamica. Очень продвинутый внешне, как будто только сошёл со страниц научно-фантастического романа, из-за чрезмерно тяжелого полностью алюминиевого кузова оказался не столь быстрым, как того хотелось. С технической точки зрения автомобиль ничем не отличался от серийной модели, но имел обтекаемый кузов с формой дирижабля. Это был один из первых опытов перенесения принципов воздушных полетов в область наземных транспортных средств. В целях аэродинамики внутрь салона помещены не только места водителя и пассажиров, но и двигатель. Открытыми остались лишь колеса, фары и радиатор. Для лучшего обозрения установлено трехсекционное панорамное лобовое стекло, дополненное круглыми боковыми окнами. Хорошая обтекаемость позволила увеличить скорость лишь на 14 км/ч по сравнению с серийной машиной. Его максимальная скорость составила 139 км/ч и была сравнима только со скоростью форсированных гоночных экземпляров.

Аэродинамически прорывным легковым автомобилем стал Rumpler Tropfenwagen (в дословном переводе кузов-капля) 1921 года, который был совершенно не похожим на другие автомобили своим целостным кузовом, оригинальным дизайном и инженерной конструкцией. Tropfenwagen разработан австрийским инженером-авиастроителем Эдмундом Румплером (Edmund Rumpler) и стал первым аэродинамическим серийным автомобилем. Коэффициент лобового сопротивления (Cd) Rumpler равен всего 0,28, что удивило более поздних инженеров и является конкурентоспособным значением даже сегодня. Для сравнения, десятка самых аэродинамических серийных автомобилей в 2014-2015 годах попадала в значение 0,26, а Fiat Balilla в середине 1930-х, напротив, обладал значением 0,60. Чтобы обеспечить необходимую аэродинамическую форму автомобиля, при разработке впервые в мире использовались изогнутые окна – ветровое и боковые стёкла значительно изгибались, позволяя снизить лобовое сопротивление. На Rumpler Tropfenwagen ставился необычный верхнеклапанный двигатель W6 от Siemens и Halske объемом 2580 куб. см. производительностью 36 л.с. Мотор устанавливался прямо перед задней осью. Двигатель, трансмиссия и главная передача были собраны вместе и установлены как единое целое. Задние «качающиеся» оси, изобретенные Румплером, были подвешены на ведомых листовых рессорах, а передняя балка была подвешена на ведущих листовых рессорах, т.е. задние колёса реагировали на неровности независимо друг от друга, в результате чего автомобиль прекрасно держал дорогу.

Важно помнить, что Cd является коэффициентом и обозначает относительную «аэродинамическую скользкость» тела, независимо от его общего размера. Кирпич любого размера имеет Cd 1,0; пуля около 0,295. Форма Rumpler была не только очень аэродинамической, но и довольно высокой и квадратной, что привело к тому, что сто или около того серийных автомобилей использовались в основном в качестве такси, ездящих по Берлину из-за их вместительных салонов. Ироничный конец для Rumpler, но его идеи породили заимствования и распространились по всему миру.

Влияние Tropfenwagen на гоночные автомобили было гораздо более непосредственным и продолжительным. Гоночная машина Benz Tropfenwagen 1923 года, он же Benz RH, являлся его прямым родственником и использовал его компоненты.
А началось все с того, что после того, как на Берлинском автосалоне Tropfenwagen увидел Ханс Нибель (Hans Nibel) – главный конструктор Benz, то проявил очень большой интерес к этой революционной концепции автомобиля. Benz приобрел лицензию у Румплера в первой половине 1922 года. А в конце 1922 года подготовил прототип открытого автомобиля, который по своей сути являлся открытой версией Rumpler Tropfenwagen только с эмблемами Benz. Затем, к 1923 году в Бенц самостоятельно разработали гоночный спортивный автомобиль. Как и в случае с Rumpler, кузов имел аэродинамическую форму, а двигатель был установлен перед задней осью (среднемоторная компоновка). Benz приводился в действие 2-литровым рядным шестицилиндровым двигателем с четырьмя клапанами на цилиндр, который выдавал от 80 до 90 л.с. Передняя ось была жесткой и подвешена на листовых рессорах, задния ось, опять же, «качающаяся». На все колёса устанавливались механически управляемые барабанные тормоза. Два автомобиля были впервые выставлены на Автодроме-ди-Милано в Монце на Гран при Европы 9 сентября 1923 года, где финишировали на четвертой и пятой позиции под управлением Фердинандо Минойя (Ferdinando “Nando” Minoia) и Франца Хёрнера (Franz Herner) . В 1925 году бизнесмен из Пфорцхайма и частный автогонщик Адольф Розенбергер (Adolf Rosenberger) выиграл гонку в горном парке Кассель на автомобиле Benz . Несколько гоночных автомобилей с измененными кузовами Benz RH периодически участвовали в различных гонках.

С расположенным по средине двигателем и «качающимися» осями сзади, Rumpler Tropfenwagen являлся не только прямым предком легендарных гоночных автомобилей Benz и Auto-Union тридцатых годов, но и всех гоночных автомобилей со средним расположением двигателя по сей день. Настоящий первооткрыватель!
Чтобы представить возникающее поле автомобильной аэродинамики в перспективе, типичный двухобъёмный автомобиль двадцатых годов был более аэродинамичным, двигаясь назад, а не вперед, как это доказал DeSoto, двигаясь задом наперед на тестах. Также в ходе рекламной кампании DeSoto Airflow колесил по США, чтобы привлечь внимание к автомобильной аэродинамике и подготовить общественность к выходу нового, более дорогого и роскошного Chrysler Airflow. Дизайн DeSoto представлял собой первую большую попытку сгладить объекты и детали, сопротивляющиеся потокам воздуха, и имеющиеся на автомобилях той эпохи. Передние фары были перенесены из своих традиционных мест перед радиатором и размещены в скрытых креплениях с обеих сторон широкой решетки в стиле водопада, в которой отсутствовали традиционная вертикальная горловина радиатора и декоративное украшение крышки. Вместо плоского ветрового стекла, которое стояло на большинстве автомобилей (и создавало лобовое сопротивление), было установлено ветровое стекло, разделённое на две отдельных стеклянных панели, каждая из которых наклонена, чтобы лучше перенаправить воздух вокруг. Передние и задние крылья получили более плавные и округлые формы. Задние колеса закрывались специальными кожухами, так же, для направления встречных потоков воздуха.
Из-за цельной конструкции автомобиля пассажиры располагались в пределах рамы автомобиля. Кузов был более жестким, а автомобиль, в целом, обладал лучшим распределением веса благодаря расположению двигателя над передними колесами, в отличие от обычной практики установки центра тяжести двигателя непосредственно за передними колесами. Автомобильная пресса дала автомобилю положительные отзывы за управляемость и ускорение.

Читайте также:
Четырехколесные дамские угодники: 7 марок машин, на которых часто разъезжают любвеобильные мужчины

Родившийся в Венгрии Пауль Ярай (Paul Jaray) использовал свой опыт работы в авиационной области, особенно в разработке дирижаблей Zeppelins, для разработки специальной формулы принципов аэродинамического проектирования автомобилей, которая привела к получению патента. В 1919 году Ярай разработал и построил аэродинамическую трубу для испытания дирижаблей.
В 1921 году Пауль подал патентную заявку на «Обтекаемый автомобиль». В 1922 году на машиностроительном заводе фирмы Ley в тюрингском Арнштадте на шасси автомобиля Ley Т6 по проекту Ярая был построен аэродинамический кузов. Данная машина считается первым обтекаемым автомобилем, созданным на базе теории аэродинамики и аэродинамических исследований.

В начале 1920-х годов инженер пытался реализовать идею автомобиля без выступающих крыльев и с более рациональной компоновкой кузова. Полагал, что обтекаемая форма кузова автомобиля дает ряд ощутимых преимуществ по сравнению с угловатой формой кузова. В 1923 году переехал в Швейцарию, открыв офис в Бруннене. Пауль разрабатывал собственные автомобили начиная с Ley 1923 года, а затем разработал модели для Chrysler, Mercedes-Benz, Maybach, Apollo, Dixi, Audi, Adler, Jawa, Ford, Steyr и других. Эксперименты с аэродинамикой и опыт, полученный при продувке «Цеппелинов» был использован им для проектирования автомобильных кузовов для Benz, Adler, Hanomag, Maybach и Audi. Автомобильные компании Chrysler и Peugeot заплатили ему за использование идеи оптимальной формы обтекаемого кузова для их моделей Airflow и 402. В 1927 году Ярай основал консалтингово-инженерную компанию Stromlinien Karosserie Gesellschaft в Цюрихе, где разрабатывал аэродинамические кузова для различных фирм, но ещё до того создал три образца кузова для компаний Ley, Audi и DIXI (которая позже станет BMW). А обтекаемый стримлайнер (транспортное средство обтекаемой формы) на базе Audi Type K существенно опередил своё время.

Одним из самых влиятельных и известных дизайнеров всей эпохи был австриец Ханс Ледвинка (Hans Ledwinka). После того как он стал главным инженером-конструктором в чешской фирме Tatra в 1921 году он разработал основу для серии замечательных автомобилей Tatra и, в конечном итоге, заднемоторную основу с каркасами обтекаемых линий, независимыми подвесками, воздушным охлаждением двигателя, которые оказали глубокое влияние и по существу надстроили шаблон того, что стало известно, как «стримлайнер». А их влияние распространилось на автомобили по всему миру в течение многих лет.
Компактная Tatra v570 1933 года является предшественником многих больших Татр, которые скоро появятся, и построена с явным влиянием Ярая, но не лицензирована им. Этот автомобиль более похож на ранние разработки Фердинада Порше (Ferdinand Porsche), которые приводят к созданию первого Volkswagen.

Прототип Volkswagen – предшественник Beetle, выпущенный в 1934 году, действительно очень сильно напоминает Tatra v570 с некоторыми дополнительными усовершенствованиями. Хотя визуальные подсказки на самом деле не так значительны, как они могут показаться сейчас, потому что они были самыми современными элементами дизайна того времени и широко применялись и распространялись по обе стороны Атлантики.

Также было отмечено, что готовый VW Beetle имеет поразительное сходство с дизайном Джона Тьяарды (John Tjaarda ) 1933 года. А именно сходство с обтекаемым автомобилем с задним расположением двигателя, который он создал для компании Briggs Manufacturing Company. В Briggs, базирующемся в Детройте, Тьяарда разрабатывал радикальный автомобиль для Ford, который стал известен, как Linkoln Zephyr. Компания Ford продемонстрировала выставочный образец на выставке «Century of Progress Exhibition» (Век прогресса) в Чикаго 1933-34 гг, как “Автомобиль мечты Бриггса” (Briggs Dream Car). Один из более поздних экземпляров выглядел почти точно так же, как Beetle, если укоротить колесную базу и убрать два боковых окна. Утверждается даже, что Фердинанд Порше посетил Компанию Бриггса, когда Тьяарда был там руководителем отдела Научно-исследовательских и опытно-конструкторских работ (НИОКР), и некоторые автоисторики утверждают, что на «Народный автомобиль Порше» повлияли проекты Тьяарды.

Но при всём при том, первым серийным стримлайнером из-за океана стал потрясающий Chrysler Airflow в 1934 году. По сути, прагматичный подход Airflow также сохранил традиционную переднемоторную заднеприводную конфигурацию, но добился некоторых значительных улучшений в плане дизайна и установки двигателя дальше от передней оси. Это, в сочетании с более широким корпусом, значительно улучшило внутреннее пространство.

У Chrysler Airflow имелись некоторые проблемы с лобовым сопротивлением. Виной тому большая площадь решётки радиатора в виде водопада. Эти проблемы в 1936 году исправил изумительный Lincoln Zephyr. Прагматичная адаптация прототипа Tjaarda по-прежнему сохраняла свою привлекательность и имела успех в продажах, несмотря на то, что была механически не столь совершенна, как Airflow.

Еще менее прагматичным, но очень продвинутым американским автомобилем был Stout Scarab. Авиационный инженер Уильям Б. Стаут (William B. Stout) сконструировал этот чрезвычайно вместительный предшественник минивэна, используя унифицированную конструкцию кузова и заднее расположение двигателя Ford V8. Первый вариант построен в 1932 году, а еще несколько вариантов (всего девять) были построены в середине тридцатых годов, но серийное производство так и не сдвинулось с мертвой точки, потому что запрашиваемая цена почти в четыре раза выше чем у Chrysler Imperial Airflow того времени. Но это не значит, что те тоже хорошо продавались.

Гораздо более радикальным подходом к рационализации стал Dymaxion Бакминстера Фуллера (Buckminster Fuller), первый из нескольких прототипов которого увидел свет в 1933 году – в разгар плодородного периода стримлайнеров по обе стороны Атлантики. Заднемоторный Dymaxion также оснащался двигателем Ford V8, но с трехколесным шасси и рулевым управлением, привязанным к заднему колесу, что позволяло ему разворачиваться на месте.

Читайте также:
Первый серийный автомобиль, который подзаряжается только от солнца

Еще одним менее известным вариантом популярного аэродинамического транспортного средства с двигателем Ford V8 был Dubonnet Ford 1936 года, чей очень гладкий и обтекаемый кузов позволял ему разогнаться до 108 миль в час (173,81 км/ч)!

Но вернемся в Чехословакию – в дизайнерские студии Tatra.

В 1933 году изготовлено несколько глиняных макетов, демонстрирующих развитие как маленького VW-подобного v570, так и более старших моделей. Первый из них – T77 построен в 1934 году. T77 обладал коэффициентом лобового сопротивления Cd 0,212! Это рекордное значение было побито серийным автомобилем EV-1 GM только в 1995 году, его коэффициент достиг значения в 0,195! Длиннохвостый и заднемоторный T77 оснащался V8 с воздушным охлаждением и задал направление дизайна Tatra вплоть до 1980-х годов. Имя Татра стала синонимом продвинутой обтекаемой формы довоенной эры, обеспечивающей быстрое передвижение (160 км/ч) на начинающих строится автобанах Третьего рейха.

Чтобы продемонстрировать, насколько быстро и далеко распространялась тема аэродинамики в это золотое для нее десятилетие, например, прототип Schlörwagen 1939 года при первоначальных испытаниях показал коэффициент Cd 0,186. При повторных испытаниях прототипа компания VW в семидесятых годах получила коэффициент Cd 0,15. Любое из этих значений помещает Schlörwagen в верхнюю часть списка самых аэродинамических концептуальных автомобилей, когда-либо созданных (полный список здесь). Что касается конкретно Schlörwagen, разработанного Карлом Шлором (Karl Schlör) и представленного публике на Берлинском автосалоне 1939 года, то он так и не поступил в производство, а единственный прототип, как это часто бывало, не сохранился.

Важно отметить, что рост интереса к аэродинамике в 1930-х годах возник из-за желания заново изобрести автомобиль и исходя из предположения, что средние скорости движения будут расти с появлением современных автомагистралей. Развитие аэродинамики было очень перспективным мероприятием, так как большинство водителей все еще двигались со скоростью 50-70 км/ч за пределами городов, а первые автострады уже строились в Германии и в США.

А какие красивые и аэродинамически эффективные автомобили подарили нам 30-е. Чего стоят только Pierce Arrow и Bugatti Atlantique coupe.

Топ-7 худших и лучших машин в мире аэродинамики

Нет в мире автопроизводителя, который бы не находился в непрерывном поиске новых аэродинамических решений. От обтекаемости машины напрямую зависят и скоростные показатели, и расход топлива (или электроэнергии), и устойчивость на дороге, а значит, и безопасность. Маленькие прорывы в этой области случаются буквально каждый год.

Главным показателем аэродинамических свойств автомобиля считается коэффициент лобового сопротивления — Cx. Цифры, которые демонстрируют свежие новинки, еще 10 лет назад казались недостижимыми для обычных, массовых машин.

Мы выбрали лучшие и худшие модели с точки зрения аэродинамики. В нашу подборку вошли только серийные легковые автомобили современности. То есть те, которые выпускаются сейчас либо выпускались в последние 15 лет и до сих пор встречаются на дорогах.

Для тех, кто хочет разобраться в вопросах аэродинамики подробнее, ниже мы приводим небольшой «ликбез», объясняющий, как рассчитывают аэродинамические коэффициенты и какие еще показатели, кроме Сх, имеют значение.

Аэродинамика для чайников:

Что такое коэффициент аэродинамического сопротивления Сх? Если выражаться предельно упрощенно, этот показатель демонстрирует, насколько автомобиль легче «прорезает» воздух по сравнению с условным цилиндром, площадь поперечного сечения которого равна максимальной площади сечения автомобиля. Еще это называют площадью фронтальной проекции машины, или коротко — мидель. У условного цилиндра Cx равен единице (в реальности точная цифра будет зависеть от длины цилиндра, но для простоты объяснения мы сейчас от этого абстрагируемся).

Cx показывает лобовое сопротивление — то есть по продольной оси «Х». Соответственно, есть еще Cy и Cz, но в случае с автомобилем они играют гораздо меньшую роль.

Как от формы тела меняется Сх? Все дело в создаваемых завихрениях. Если вместо цилиндра взять плоский щит такого же диаметра, то его сопротивление воздуху будет на 17-20% больше, чем у цилиндра (Cx щита = 1,17-1,2) за счет завихрений позади щита. Там создается зона разреженного воздуха, и она сама по себе как бы «тянет» щит назад. То же самое происходит и с автомобилем.

Одна из лучших форм с точки зрения аэродинамики — капля. У нее Сх будет равен лишь 0,04. То есть капля на 96% более обтекаема, чем цилиндр при равенстве диаметров. Это получается потому, что сзади у капли — длинный сужающийся хвост, а спереди — округлый «обтекатель». Они обеспечивают минимум завихрений. Создатели первых аэродинамичных автомобилей середины прошлого века экспериментировали именно с каплевидными формами кузова (вспомните, какой «хвост» у «Победы»).

У современных легковых автомобилей Сх чаще всего составляет около 0,3. Это означает, что автомобиль на 70% эффективнее с точки зрения аэродинамики, чем цилиндр.

Реальная сила, с которой воздух сопротивляется движению автомобиля, зависит, разумеется, от скорости. Причем с ростом скорости аэродинамическое сопротивление возрастает квадратично. Это влияет в первую очередь на расход топлива — и чем выше скорость, тем больше влияет. Само собой, и максимальная скорость тоже ограничена не только мощностью мотора, но и аэродинамическими особенностями автомобиля.

Создатели автомобилей, кроме обтекаемости машины в продольном направлении, также заботятся об обтекаемости сбоку и о подъемной силе, действующей на автомобиль.

Подъемная сила — это вторая по значимости проблема в аэродинамике автомобилей помимо лобового сопротивления воздуха. Дело в том, что абсолютно любой автомобиль по своим формам похож на профиль крыла самолета: снизу плоский, а сверху — выпуклый. Это означает, что воздух, протекающий над автомобилем, совершает более длинный путь, чем воздух снизу. И скорость потока снизу выше, чем сверху. Из-за этого над машиной появляется зона разреженного воздуха, а под ней, напротив, зона повышенного давления. Чем выше скорость, тем сильнее воздух снизу приподнимает автомобиль.

Разного рода аэродинамические элементы вроде антикрыльев, спойлеров, сплиттеров, диффузоров и накладок на днище призваны создать прижимную силу. В случае с гоночными болидами удается этого достичь в полной мере: чем выше скорость, тем сильнее прижимается машина к земле. Это увеличивает сцепление колес с дорогой и делает автомобиль более стабильным на высоких скоростях.

Читайте также:
7 наиболее популярных люксовых автомобилей в России

Тут еще надо упомянуть о таком явлении, как граунд-эффект — за счет особой формы днища и применения аэродинамических «юбок» вдоль бортов конструкторы гоночных машин научились в свое время создавать под машиной зону разреженного воздуха, за счет чего автомобиль «липнет» к дороге. Этим прежде пользовались конструкторы Формулы 1, однако в 80-е годы граунд-эффект в Королевских гонках был запрещен. С тех пор у всех болидов одинаковое ровное днище.

В случае с гражданскими автомобилями о создании прижимной силы говорить не совсем корректно. За счет аэродинамических ухищрений удается добиться снижения подъемной силы, но все равно машины на высоких скоростях немного «взлетают», колеса разгружаются и стабильность падает.

Подъемная сила и сила лобового сопротивления это еще не все. Важное значение имеют момент крена и поворачивающий момент (измеряются при повороте автомобиля под углом к воздушному потоку). Эти показатели отражают склонность машины реагировать на боковые порывы ветра. Чем меньше эти цифры, тем лучше машина держит скоростную прямую и меньше отклоняется от траектории, например, при проезде встречной фуры.

Еще один важный показатель — опрокидывающий момент. Положительные значения этих сил говорят о том, что с ростом скорости передние колеса разгружаются, а задние — нагружаются; отрицательные — наоборот. В идеале — должен быть близок к нулю.

се эти показатели измеряются «вживую» путем продувки автомобилей и макетов в аэродинамической трубе на разных скоростях воздушного потока и измерения реальных сил, действующих на кузов.

Аэродинамическая труба, позволяющая продувать полномасштабные макеты машин и реальные автомобили — это очень большое и сложное сооружение. Скажем, труба на «АвтоВАЗе» имеет длину 67,5 м, а ширину — 29 м. Воздух в ней проходит путь в 150 метров. Поток создается вентилятором, диаметр которого 7,4 м. Максимальная скорость воздушного потока в трубе — 216 км/ч.

Рейтинг худших автомобилей по части аэродинамики

Автомобилей с ужасной аэродинамикой в мире немало, но по понятным причинам многие производители не раскрывают официальные цифры аэродинамических показателей. Более того — у множества моделей они вообще никогда не измерялись ни производителем, ни независимыми исследователями. Мы выбрали семерку наиболее показательных машин, по которым данные известны и достоверны.

7. Lada 4×4 / ВАЗ-21213 «Нива». Коэффициент Сх = 0,536

В том, что классическая «Нива» не умеет ездить быстро, вина не только слабого 81-сильного мотора, но и, конечно, аэродинамики. «Максималка» у этого автомобиля — всего лишь 137 км/ч. Впрочем, для машины родом из 70-х годов прошлого века это не так плохо. Владельцы «Лады 4х4» могут утешать себя тем, что Гелендваген, являющийся практически ровесником тольяттинского внедорожника, по обтекаемости еще хуже.

6. Mercedes-Benz G-класса. Коэффициент Сх = 0,54

Те, кто говорит, что у Гелендвагена аэродинамика кирпича, все-таки сильно сгущают краски. У тела кубической формы Сх равен 1,05, а у Мерседеса G-класса этот показатель вдвое меньше. Гелендваген очень сильно страдает от своей аэродинамики: какой бы мощный мотор ни ставили на эту модель, ее «максималка» оставляет желать лучшего. Даже безумная версия G 65 AMG, развивающая 630 л.с., способна набирать всего лишь 230 км/ч.

5. Вазовская «классика». Коэффициент Сх = 0,56-0,5

В зависимости от модели аэродинамика тольяттинских автомобилей классического семейства немного различается. Наши коллеги из «Авторевю» в 2000 году продули «семерку» и получили результат 0,546. Хуже всего дела у «копейки» — аж 0,56. Такие данные приводит учебник «Автомобили и тракторы. Основы эргономики и дизайна», изданный МАМИ в 2002 году. «Шестерка», по тем же данным, имеет коэффициент 0,54. А лучше всех себя показал универсал 2104 — 0,53.

4. Hummer H2. Коэффициент Сх = 0,57

Многие и не догадываются, что Hummer на трассе с трудом может угнаться за современной малолитражкой, включая Lada Granta. Американский внедорожник не способен ехать быстрее 160 км/ч, в то время как тольяттинской модели покоряется скорость в 183 км/ч. Понятно, что Hummer более чем вдвое тяжелее, но так и мотор у него какой! Выпускавшийся с 2002 по 2009 годы внедорожник имеет под капотом могучий V8 рабочим объемом 6,2 л (393 л.с.), но при Cx = 0,57 он просто не способен нормально «продираться» сквозь толщу воздуха.

3. Jeep Wrangler (поколение TJ). Коэффициент Сх = 0,58

Автомобиль, который произошел от армейского «Виллиса» образца 1941 (!) года, принципиально чужд высоким скоростям. Конечно, современная машина не имеет общих кузовных панелей с Джипом времен Второй мировой войны: Wrangler гораздо крупнее и имеет более обтекаемые формы. Но это не сильно помогает. Хуже всего дела обстоят у двухдверной модификации с открытым верхом (Сх = 0,58). А лучше всего, как можно догадаться, у длиннобазной пятидверки с жесткой крышей — Jeep Wrangler Unlimited. Эта версия имеет Cx, равный 0,495.

2. УАЗ «Хантер» / УАЗ-469. Коэффициент Сх = 0,6

Выпускающийся сейчас «Хантер» мало отличается от УАЗа-469 образца 1972 года, и потому не мог не попасть в наш антирейтинг. Данные по УАЗу-469 приводит вышеупомянутый учебник МАМИ. Доверять этим сведениям вполне можно: первый в списке авторов — профессор Игорь Степанов, много лет занимающийся именно аэродинамикой, а также Анатолий Карунин — в прошлом заведующий кафедрой «Автомобили», а ныне ректор МГТУ «МАМИ».

1. Caterham Seven. Коэффициент Сх = 0,7

Как ни странно, у этого спорткара дела с аэродинамикой обстоят гораздо хуже, чем у угловатых внедорожников. Дело в том, что перед нами фактически разработка 50-х годов — Lotus Seven. Но самое интересное, что ужасная аэродинамика ничуть не мешает этой модели отлично проявлять себя на треке: дело в том, что сухой вес Caterham — лишь 575 кг. Поэтому при мощности в 260 л.с. (с «топовым» мотором) эта модель может набирать 250 км/ч. Ну а разгон до 100 км/ч и вовсе суперкаровский — 3,1 секунды.

Рейтинг лучших автомобилей по части аэродинамики

Борьба за улучшение аэродинамики машин сейчас обострилась как никогда: многие автопроизводители идут буквально «колесо в колесо». Поэтому на некоторых строчках нашего рейтинга расположились не одна и не две, а сразу несколько моделей (и в некоторых случаях это еще не полный список!). По каждой из моделей приведены данные той модификации, которая является лучшей по значению Сх.

Читайте также:
Самый безопасный для пассажиров кроссовер за всю историю краштестов Euro NCAP

Места с седьмого по пятое делят сразу два десятка машин, так что отдельно комментировать каждую из них мы не будем. Ну а начиная с четвертого места — то есть с Cx = 0,23 — остановимся на каждой модели.

7. BMW 3-й серии (E90), BMW i8, Jaguar XE, Lexus LS, Mazda 3, Mercedes B-класса, Mercedes C-класса Coupe, Mercedes E-класса, Infiniti Q50, Nissan GT-R

Коэффициент Сх = 0,26

6. Alfa Romeo Giulia, Honda Insight, Audi A2, Peugeot 508

Коэффициент Сх = 0,25

5. Tesla Model S, Tesla Model X, Hyundai Sonata Hybrid, Mercedes C-класса, Toyota Prius

Коэффициент Сх = 0,24

4. Audi A4, Mercedes CLA, Mercedes S 300 h Коэффициент Сх = 0,23

Сразу оговоримся: у Audi такие чудеса аэродинамики демонстрирует только одна модификация — Audi A4 2.0 TDI ultra (190 л.с.), которая имеет специальные щитки, экранирующие днище, а также активные жалюзи в решетке радиатора. А вот у остальных модификаций А4 аэродинамика не столь выдающаяся: Сх = 0,26-0,27. За счет удачной обтекаемости автомобиль с аэродинамическими щитками потребляет за городом (то есть на сравнительно высоких скоростях) всего лишь 3,4-3,5 л солярки на 100 км. В смешанном цикле — 3,9-4 л.

У «Мерседеса» тоже не все модификации CLA демонстрируют Сх, равный 0,23, а только версии BlueEfficiency. Может показаться странным, что самые худшие цифры — у мощных спортивных версий. Скажем, CLA 250 4Matic имеет Cx = 0,29, а версия AMG 45 — и вовсе 0,30. Но удивляться не следует: при доводке аэродинамики этих машин инженерам надо было особо позаботиться о снижении подъемной силы на предельных скоростях, и обтекаемость отчасти принесена в жертву.

В случае с S-классом лишь самая младшая версия S 300 h демонстрирует отличные показатели. А вот у «шестисотого» Сх = 0,28.

3. Tesla Model 3

Новый электромобиль, который Tesla представила этой весной, а запустит в производство на будущий год, отличается феноменальной аэродинамикой. Да, он все же уступил двум моделям в нашем рейтинге, но каким! Те, что заняли первые два места, представляют собой миниатюрные экспериментальные машины, не особо подходящие для нормальной эксплуатации и задуманные как мелкосерийные. «Тесле» же удалось сделать кузов гольф-класса — вполне практичный и при этом сверхобтекаемый. И эта модель рассчитана на массовое производство. За первую неделю приема предзаказов эта машина нашла более 300 тысяч покупателей.

2. General Motors EV1 Коэффициент Сх = 0,195

Эту модель, выпускавшуюся с 1996 по 1999 год, называют первой серийной разработкой современного автопрома, которая изначально создавалась именно как электромобиль. И, кстати, это единственный случай в истории, когда GM выпустил автомобиль под собственным именем, а не под одной из марок своих подразделений. Двухместное купе EV1 имело запас хода до 160 км, что сравнимо с современными электромобилями вроде Nissan Leaf. Автомобиль опередил свое время и по-настоящему массовым не стал: тираж составил 1117 штук.

Много лет именно эта машина удерживала титул самой аэродинамичной модели в мире, пока в 2013 году не был представлен…

1. Volkswagen XL1 Коэффициент Сх = 0,189

Футуристическая капсула с полностью закрытыми задними колесами выглядит как пришелец из будущего. В движение XL1 приводит гибридная силовая установка с дизельным мотором, которая, по задумке создателей, должна тратить всего 1 л топлива на 100 км пути. Добиться таких впечатляющих показателей удалось во многом благодаря уникальной аэродинамике.

Volkswagen XL1 продается на Западе с середины 2014 года по цене €111 000. Тем, кто хочет купить эту модель, надо поторопиться: тираж ограничен 250 экземплярами.

10 самых высокотехнологичных автомобилей мира 2021

Современные автомобили нашпигованы огромным количеством всяких новомодных технологий. Причем прогресс затронул не только электромобили и гибриды, но и традиционные авто с бензиновым двигателем.

Специально для вас я составил выборку из десяти самых высокотехничных в мире автомобилей 2021 года. Некоторые из них относятся к премиум-классу, а другие способны приятно поразить количеством инноваций за каждый потраченный рубль.

10. Ford Mustang Mach-E 2021

Под капотом или в салоне? Новые технологии в Ford Mustang Mach-E есть и там и там! Стоит опуститься на сиденье первого электрокара в линейке Ford Mustang, и ваш взгляд немедленно упадет на медиа-дисплей диагональю 15,5 дюйма.

С его помощью можно не только посмотреть видео, послушать музыку или узнать о пробках на дорогах, но также настроить самые различные параметры автомобиля. На сегодняшний день это самая новейшая и самая последняя версия программного обеспечения Sync от компании Ford.

Вторая основная инновация Ford Mustang Mach-E – это модульность. Проще говоря, компания сделала еще один шаг вперед к сборным-разборным, как модельки из «Лего», автомобилям. Хотите только один электродвигатель на задней оси? Без проблем. Захотелось полного привода? Просто установите еще один двигатель спереди. Недостаточно одного аккумулятора? Не вопрос! Благодаря системе Mach-E можно собрать автомобиль мечты.

9. Mercedes-Benz S-Class 2021

Новый «Мерседес» класса лакшери просто обязан быть нашпигован хайтеком, и автомобиль S-Class в этом плане является его достойным преемником. В первую очередь обращает на себя внимание приборная панель в 3D и огромная – и это не преувеличение – проекция на лобовое стекло. Кроме того, в этот гигантский «дисплей» включена система дополненной реальности, так что счастливый водитель никогда не пропустит сложный поворот.

Автомобиль обзавелся новой версией превосходной информационно-развлекательной системы Mercedes MBUX, которая может обмениваться данными с экранами других пассажиров, в том числе находящихся на заднем сиденье.

Не нравится видео, хочется звука? На то существует аудиосистема Burmester 4D, оснащенная 30 динамиками. И помимо этого, еще есть сиденья с подогревом, охлаждением, массажом, ароматизация салона, и дверные ручки, которые услужливо выдвигаются при вашем приближении.

Развлечения развлечениями, но и о безопасности создатели автомобиля не забыли: у «Мерседеса» S-Class впервые в отрасли появилась подушка безопасности для задних сидений. Кроме того, каждый автомобиль оборудован еще и целым рядом средств помощи водителю, куда входят адаптивный круиз-контроль, автоматическое экстренное торможение, помощь при парковке и многое другое.

Читайте также:
Автомобили Роналду и Месси: у кого круче

8. Tesla Model Y 2021

Рейтинг наиболее высокотехнологичных автомобилей мира не мог обойтись без авто, воплощающего в себе идеальное сочетание футуризма и функциональности. Недавняя переработка салона позволила распрощаться со многими недостатками, на которые жаловались «тесловцы» — например, глянцево-черной центральной консолью, которая просто притягивала к себе отпечатки пальцев.

Но в первую очередь автомобили «Тесла» известны своим программным обеспечением, которое по количеству функций на голову превосходит все другие автомобили. Оно представляет собой идеальный баланс между техническими настройками и медиа-контентом, приправленное забавными пасхалками.

Мало того, еще с 2017 года автомобили «Тесла» способны загружать обновления по беспроводной сети! И хотя у Tesla Model Y нет ни Apple CarPlay, ни Android Auto, однако информационно-развлекательный экран с диагональю 15 дюймов предоставит доступ к Google Maps и Spotify, так что особой разницы вы не ощутите.

С точки зрения безопасности Tesla Model Y очень хороша: она была удостоена пяти звезд в каждой категории по версии Национального управления безопасностью движения на трассах. Программное обеспечение (которое, добавим, постоянно обновляется и совершенствуется) предупреждает вас, если вы оставили дверь машины не запертой, предлагает создать ПИН-код для защиты отделения для перчаток, выводит на экран дополнительную дорожную разметку, что помогает лучше ориентироваться в потоке машин, и способно на многое, многое другое.

7. Nissan Versa 2021

На протяжении многих лет компания «Ниссан» выпускает на рынок стильные и комфортные автомобили. Не так давно она презентовала широкой общественности новый Nissan Versa, который воплотил в себе идеальное соотношение цены, качества, внешнего вида и высоких технологий. Даже в самую бюджетную и минималистичную комплектацию S входят системы предупреждения о выезде с полосы движения и автоматического экстренного торможения.

Еще S-версия оснащена семидюймовым центральным сенсорным дисплеем, который, правда, не поддерживает CarPlay или Android Auto. Однако это с лихвой компенсируется специальным смартфонным приложением, которое позволяет управлять автомобилем при помощи голосовых команд. То есть всего за 16 000 долларов – стандартная цена S-комплектации в США – пользователь получает автомобиль с потоковой передачей данных, навигацией, коммуникационными устройствами и голосовым интерфейсом! А если невмоготу жить без CarPlay или Android Auto, то стоит обратить внимание на более дорогие комплектации.

6. Ford F-150 PowerBoost Hybrid 2021

Поразительно, что пикап Ford F-150 – автомобиль, который изначально создавался как рабочая лошадка – оказался одной из самых высокотехнологичных моделей нынешнего года.

  1. Одна из главных причин – это система PowerBoost, в которой электродвигатель работает вместе с топовым шестицилиндровым двигателем EcoBoost 3,5 л с двойным турбонаддувом. Добавив электродвигатель к бензиновому, инженеры компании создали на редкость мощную и при этом экономичную машину, которая с легкостью может буксировать грузы весом 6 тонн.
  2. Еще в числе инноваций 2021 Ford F-150 PowerBoost Hybrid входят: возможность управления автомобилем без помощи рук; автоматическое торможение в случае наличия встречного транспорта; обнаружение пешеходов; помощь при сцеплении и парковке; и многое другое.
  3. Но самая главная изюминка этого научно-технического пикапа – это встроенный генератор Pro Power Onboard, своего рода стационарная электростанция, которая вырабатывает электричество мощностью до 7,2 кВт. И если внезапно в вашем загородном доме погаснет свет, вы знаете, что делать!

5. Porsche 911 GT3 2022

Любой автомобиль от «Порше» — впечатляющее сочетание электронных новшеств и инженерной мысли. Не станет исключением и Porsche 911 GT3. В первую очередь обращает на себя внимание его сногсшибательный шестицилиндровый двигатель объемом 4 л, который способен разогнаться до 9000 об/мин и выдать больше 500 «лошадей» — и при этом соблюсти все европейские экологические нормы. А скорость и плавность переключения передач у коробки PDK с двойным сцеплением удивит самых искушенных водителей.

С точки зрения электронной начинки авто вполне соответствует начинке «железной». Салон у этого спорткара просто роскошный, в который естественно вписался большой информационно-развлекательный сенсорный дисплей. У него много опций, а система управления проста и интуитивно понятна.

Добавим сюда еще гоночную индикацию, которая расскажет все об автомобиле, от давления воздуха в шинах до ассистента переключений, запишет ваши лучшие результаты прохождения гоночных треков, а также систему Porsche Connect с голосовым управлением.

4. Polestar 2 2021

От прочих электрокаров Polestar 2 отличает наличие Android Automotive. Это не просто сенсорный экран в салоне: фактически Android интегрирован в электронные системы автомобиля и позволяет непосредственно управлять им при помощи голоса. Так что для «общения» с Polestar 2 смартфон вам не понадобится.

Google Assistant автомобиля может как настраивать температуру внутри салона, так и отправлять сообщения, при этом водителю даже не надо снимать руки с руля. В эту модель «встроены» как GoogleMaps, так и YouTube Music. Возможностей у новой системы пока маловато – она только-только начинает развиваться. По неофициальной информации, скоро в автомобиль включат и поддержку Apple CarPlay.

Polestar 2 является отличным представителем электрокаров современности. Он быстр, экономичен и из инноваций может быть оснащен регулируемой подвеской Ohlins.

3. Chevrolet Bolt EUV 2022

Главная изюминка этого электрокара-внедорожника – система Super Cruise. С ее помощью машиной можно будет управлять без помощи рук. Даже вечному сопернику Super Cruise – автопилоту «Теслы» — пришлось отдать ему пальму первенства в испытаниях.

Как говорят, причина – в специальной инфракрасной камере Super Cruise с функцией распознавания лиц, которая следит, на месте ли водитель и готов ли он перехватить управление в случае чего.

А еще Chevrolet Bolt EUV версии 2022 года – словно ожившая мечта техно-гика. В стандартную комплектацию входи поддержка Apple CarPlay и Android Auto, сенсорный экран с диагональю 10,2 дюйма. А система безопасности Safety Assist позволит автоматически удержать автомобиль в полосе и заставит Chevrolet Bolt EUV экстренно затормозить, если на дороге внезапно возникнет препятствие.

2. Hyundai Elantra 2021

Если вы ищете компактный и высокотехнологичный седан по доступной цене, то советуем обратить внимание на Hyundai Elantra версии 2021 года. В своем ценовом сегменте этот автомобиль предоставляет самый внушительный список информационно-развлекательных и электронных систем безопасности.

Читайте также:
Поймай меня, если сможешь: 10 лучших автомобильных погонь в кино

В салоне у Hyundai Elantra находится сенсорная панель приборов диагональю 10,2 дюйма, 8-дюймовый сенсорный же медиа-дисплей с поддержкой Apple CarPlay, Android Auto и Bluetooth. Есть также цифровой ключ от Hyundai, при помощи которого владельцы могут запускать и блокировать свою «Элантру» через приложение на смартфоне.

Что касается систем безопасности, то список впечатляет:

  • предупреждение о лобовом столкновении с автоматическим торможением,
  • мониторинг слепых зон,
  • предупреждение о возможном столкновении сзади,
  • помощь в удержании полосы движения,
  • подсказка о безопасном выходе.
  • При желании можно докупить адаптивный круиз-контроль и обнаружение пешеходов.

1. Cadillac Escalade 2021

Если вы в восторге от больших экранов и всяческих электронных систем, облегчающих жизнь водителю, то Cadillac Escalade просто создан для вас. В салоне у него не одна, а сразу три OLED-панели в 38 дюймов и с превосходным качеством изображения. Реагируют они на команды молниеносно, даже при масштабировании движением пальца, с чем другие системы испытывают трудности. Система дополненной реальности позволит лучше ориентироваться в потоке автомобилей, а благодаря стрелкам направления на видеопотоке вы никогда не пропустите поворот.

В дополнение к роскошным экранам Cadillac Escalade обзавелся системой вождения без помощи рук Super Cruise, которая помимо слежения за водителем еще ориентируется на изображения, передаваемые с внешних камер, и данные GPS, и способна сама менять полосу движения.

Правда, делает это «умная» машина только на тех дорогах, которые «оцифрованы» в 3D – то есть даже территория США, родины Cadillac, еще не полностью охвачена. И хотя OLED-экраны входят во всех комплектации, но Super Cruise – только начиная с Premium Luxury. Впрочем, когда это последние технологии были дешевыми?

Аэродинамика автомобиля

Зачем это нужно

Для чего нужна аэродинамика автомобилю, знают все. Чем обтекаемее его кузов, тем меньше сопротивление движению и расход топлива. Такой автомобиль не только сбережет ваши деньги, но и в окружающую среду выбросит меньше всякой дряни. Ответ простой, но далеко не полный. Специалисты по аэродинамике, доводя кузов новой модели, еще и:

  • рассчитывают распределение по осям подъемной силы, что очень важно с учетом немалых скоростей современных автомобилей,
  • обеспечивают доступ воздуха для охлаждения двигателя и тормозных механизмов,
  • продумывают места забора и выхода воздуха для системы вентиляции салона,
  • стремятся понизить уровень шумов в салоне,
  • оптимизируют форму деталей кузова для уменьшения загрязнения стекол, зеркал и светотехники.

Причем решение одной задачи зачастую противоречит выполнению другой. Например, снижение коэффициента лобового сопротивления улучшает обтекаемость, но одновременно ухудшает устойчивость автомобиля к порывам бокового ветра. Поэтому специалисты должны искать разумный компромисс.

Снижение лобового сопротивления

От чего зависит сила лобового сопротивления? Решающее влияние на нее оказывают два параметра – коэффициент аэродинамического сопротивления Сх и площадь поперечного сечения автомобиля (мидель). Уменьшить мидель можно, сделав кузов ниже и уже, но вряд ли на такой автомобиль найдется много покупателей. Поэтому основным направлением улучшения аэродинамики автомобиля является оптимизация обтекания кузова, другими словами – уменьшение Сх. Коэффициент аэродинамического сопротивления Сх – это безразмерная величина, которая определяется экспериментальным путем. Для современных автомобилей она лежит в пределах 0,26-0,38. В зарубежных источниках коэффициент аэродинамического сопротивления иногда обозначают Cd (drag coefficient – коэффициент сопротивления). Идеальной обтекаемостью обладает каплевидное тело, Сх которого равен 0,04. При движении оно плавно рассекает воздушные потоки, которые затем беспрепятственно, без разрывов, смыкаются в его «хвосте».

Иначе ведут себя воздушные массы при движении автомобиля. Здесь сопротивление воздуха складывается из трех составляющих:

  • внутреннего сопротивления при прохождении воздуха через подкапотное пространство и салон,
  • сопротивления трения воздушных потоков о внешние поверхности кузова и
  • сопротивления формы.

Третья составляющая оказывает наибольшее влияние на аэродинамику автомобиля. Двигаясь, автомобиль сжимает находящиеся перед ним воздушные массы, создавая область повышенного давления. Потоки воздуха обтекают кузов, а там, где он заканчивается, происходит отрыв воздушного потока, создаются завихрения и область пониженного давления. Таким образом, область высокого давления спереди мешает автомобилю двигаться вперед, а область пониженного давления сзади «засасывает» его назад. Сила завихрений и величина области пониженного давления определяется формой задней части кузова.

Передняя часть и боковые поверхности автомобиля особых хлопот конструкторам в плане аэродинамики не доставляют. Здесь главное – избегать резких переходов и выступов, предотвращая тем самым отрыв воздушного потока от поверхности кузова.

А вот с задней частью кузова все гораздо сложнее. Как нетрудно догадаться, наименее аэродинамичными являются универсалы – их форма меньше всего напоминает идеальную «каплю». За их обширным «задком» образуется внушительная зона разряжения, которая не только снижает Сх, но и «засасывает» пыль и грязь, оседающую на заднем стекле. Немного уменьшить ее вредное воздействие можно с помощью установки дефлектора на верху пятой двери. Он направляет часть воздушного потока вниз, снижая разряжение и уменьшая загрязнение.

Не все просто и с хэтчбеками, хотя, на первый взгляд, их форма кажется наиболее обтекаемой. Впечатление обманчиво – яркий пример непредсказуемости аэродинамики. Сх хэтчбеков зависит от угла наклона задней части. При большом угле наклона (а таких моделей большинство) процесс обтекания практически не отличается от универсалов – воздушный поток отрывается от верхней кромки крыши и создает значительную зону разряжения.

С уменьшением угла наклона до 30-35 градусов точка отрыва потока перемещается на нижнюю кромку задней части. Казалось бы, зона разряжения и, соответственно, Сх должны уменьшиться. Но, как это на первый взгляд ни парадоксально, происходит все наоборот. Дело в том, что в этом случае воздушные потоки с боков кузова, попадая на наклонную поверхность, образуют кромочные вихри, которые, закручиваясь по спирали, создают за автомобилем еще большую зону разряжения. Борются с этим явлением с помощью спойлера, устанавливаемого на кромке крыши. При этом точка отрыва потока перемещается с нижней кромки задней части на верхнюю, что предотвращает образование кромочных вихрей и несколько улучшает общую аэродинамику.

А вот если уменьшить наклон «задка» до 20-23 градусов, воздушный поток с крыши почти идеально обтекает автомобиль, отрываясь от нижней кромки. При этом кромочные вихри уже не образуются, и зона разряжения получается минимальной. Но такие автомобили теряют в практичности и поэтому среди серийных моделей их совсем немного.

Читайте также:
Фантастические тачки из фильмов: появится ли такие авто в будущем

Наилучшие показатели обтекаемости демонстрируют автомобили со ступенчатой формой задней части – седаны и купе. Объяснение простое – сорвавшийся с крыши поток воздуха тут же попадает на крышку багажника, где нормализуется и затем окончательно срывается с его кромки. Боковые потоки тоже попадают на багажник, который не дает возникать вредным вихрям за автомобилем. Поэтому чем выше и длиннее крышка багажника, тем лучше аэродинамические показатели. На больших седанах и купе иногда даже удается достичь безотрывного обтекания кузова. Небольшое сужение задней части также помогает снизить Сх. Кромку багажника делают острой или в виде небольшого выступа – это обеспечивает отрыв воздушного потока без завихрений. В результате область разряжения за автомобилем получается небольшой.

Днище автомобиля также оказывает влияние на его аэродинамику. Выступающие детали подвески и выхлопной системы увеличивают сопротивление. Для его уменьшения стараются максимально сгладить днище или прикрыть щитками все, что «торчит» ниже бампера. Иногда устанавливают небольшой передний спойлер. Спойлер снижает поток воздуха под автомобилем. Но тут важно знать меру. Большой спойлер существенно увеличит сопротивление, но зато автомобиль будет лучше «прижиматься» к дороге. Но об этом – в следующем разделе.

Прижимная сила

При движении автомобиля поток воздуха под его днищем идет по прямой, а верхняя часть потока огибает кузов, то есть, проходит больший путь. Поэтому скорость верхнего потока выше, чем нижнего. А согласно законам физики, чем выше скорость воздуха, тем ниже давление. Следовательно, под днищем создается область повышенного давления, а сверху – пониженного. Таким образом создается подъемная сила. И хотя ее величина невелика, неприятность состоит в том, что она неравномерно распределяется по осям. Если переднюю ось подгружает поток, давящий на капот и лобовое стекло, то заднюю дополнительно разгружает зона разряжения, образующаяся за автомобилем. Поэтому с ростом скорости снижается устойчивость и автомобиль становится склонен к заносу.

Каких-либо специальных мер для борьбы с этим явлением конструкторам обычных серийных автомобилей выдумывать не приходится, так как то, что делается для улучшения обтекаемости, одновременно увеличивает прижимную силу. Например, оптимизация задней части уменьшает зону разряжения за автомобилем, а значит и снижает подъемную силу. Выравнивание днища не только уменьшает сопротивление движению воздуха, но и повышает скорость потока и, следовательно, снижает давление под автомобилем. А это, в свою очередь, приводит к уменьшению подъемной силы. Точно так же две задачи выполняет и задний спойлер. Он не только уменьшает вихреобразование, улучшая Сх, но и одновременно прижимает автомобиль к дороге за счет отталкивающегося от него потока воздуха. Иногда задний спойлер предназначают исключительно для увеличения прижимной силы. В этом случае он имеет большие размеры и наклон или делается выдвижным, вступая в работу только на высоких скоростях.

Для спортивных и гоночных моделей описанные меры будут, естественно, малоэффективны. Чтобы удержать их на дороге, нужно создать большую прижимную силу. Для этого применяются большой передний спойлер, обвесы порогов и антикрылья. А вот установленные на серийных автомобилях, эти элементы будут играть только лишь декоративную роль, теша самолюбие владельца. Никакой практической выгоды они не дадут, а наоборот, увеличат сопротивление движению. Многие автолюбители, кстати, путают спойлер с антикрылом, хотя различить их довольно просто. Спойлер всегда прижат к кузову, составляя с ним единое целое. Антикрыло же устанавливается на некотором расстоянии от кузова.

Практическая аэродинамика

Выполнение нескольких несложных правил позволит вам получить экономию из воздуха, снизив расход топлива. Однако эти советы будут полезны только тем, кто часто и много ездит по трассе.

При движении значительная часть мощности двигателя тратится на преодоление сопротивления воздуха. Чем выше скорость, тем выше и сопротивление (а значит и расход топлива). Поэтому если вы снизите скорость даже на 10 км/ч, сэкономите до 1 л на 100 км. При этом потеря времени будет несущественной. Впрочем, эта истина известна большинству водителей. А вот другие «аэродинамические» тонкости известны далеко не всем.

Расход топлива зависит от коэффициента лобового сопротивления и площади поперечного сечения автомобиля. Если вы думаете, что эти параметры заложены на заводе, и автовладельцу изменить их не под силу, то вы ошибаетесь! Изменить их совсем несложно, причем можно добиться как положительного, так и отрицательного эффекта.

Что увеличивает расход? Непомерно «съедает» топливо груз на крыше. И даже бокс обтекаемой формы будет отнимать не менее литра на сотню. Нерационально сжигают топливо открытые во время движения окна и люк. Если перевозите длинномерный груз с приоткрытым багажником — тоже получите перерасход. Различные декоративные элементы типа обтекателя на капоте («мухобойки»), «кенгурятника», антикрыла и других элементов доморощенного тюнинга хоть и принесут эстетическое наслаждение, но заставят вас дополнительно раскошелиться. Загляните под днище — за все, что провисает и выглядывает ниже линии порога, придется доплачивать. Даже такая мелочь, как отсутствие пластиковых колпаков на стальных дисках, повышает расход. Каждый перечисленный фактор или деталь по отдельности увеличивают расход не на много — от 50 до 500 г на 100 км. Но если все суммировать, «набежит» опять же около литра на сотню. Эти расчеты справедливы для малолитражных автомобилей при скорости 90 км/ч. Владельцы больших автомобилей и любители блльших скоростей делайте поправку в сторону увеличения расхода.

Если выполнить все вышеперечисленные условия, мы сможем избежать излишних трат. А можно ли еще снизить потери? Можно! Но это потребует проведения небольшого внешнего тюнинга (речь идет, конечно, о профессионально выполненных элементах). Передний аэродинамический обвес не дает воздушному потоку «врываться» под днище автомобиля, накладки порогов прикрывают выступающую часть колес, спойлер препятствует образованию завихрений за «кормой» автомобиля. Хотя спойлер, как правило, уже включен в конструкцию кузова современного автомобиля.

Так что получать экономию из воздуха – вполне реально.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: